RON: Choosing Resiliency

David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek Robert Morris, Alex Snoeren

MIT Laboratory for Computer Science

October 2002

http://nms.lcs.mit.edu/ron/

The Internet Abstraction

• Any-to-any communication

The Internet Abstraction

 Any-to-any communication transparently routing around failures

The Internet has Redundancy

Traceroute between 12 hosts,
 showing Autonomous Systems (AS's)

How Robust is Internet Routing?

- ✓ Scales well
- X Suffers slow outage detection and recovery

Internet backbone routing also cannot:

- Detect badly performing paths
- Efficiently leverage redundant paths
- Multi-home small customers
- Express sophisticated routing policy / metrics
- → We'd like to fix these shortcomings

Goal

Improve communication availability, at a layer where we can affect the network: Overlay communities.

- Collaboration and conferencing
- Virtual Private Networks (VPNs)
- 5 friends who want better service...
- ...Or a new kind of ISP?

Interest in improving communication between *any* members of the community

Overlays

- Old idea in networks
- Easily deployed
- Lets Internet focus on scalability
- Keep functionality between active peers
- ✓ Lets us choose resiliency mechanisms

RON: Routing around Internet Failures

The Internet takes a while to re-route

RON: Best Path Routing

The Internet takes a while to re-route

... Cooperating hosts in different routing domains can do better by re-routing through a peer node

RON: Redundant Multipath Routing

The Internet takes a while to re-route

...So proactively defend against loss by using multiple routes

Best Path Routing

- Frequently measure *all* inter-node paths
- Exchange routing information
- Route along app-specific best path consistent with routing policy

Probing and Outage Detection

- Probe every random(14) seconds
- 3 packets, both sides get RTT and reachability
- If "lost probe," send next immediately
 Timeout based on RTT and RTT variance
- If N lost probes, notify outage

Architecture: Probing

- → Probe between nodes, determine path qualities
 - $-O(N^2)$ probe traffic with active probes
 - Passive measurements

Architecture: Routing Protocol

- Probe between nodes, determine path qualities
- Store probe results in performance database
- → Link-state routing protocol between nodes
 Disseminates info using the overlay

Routing: Building Forwarding Tables

Policy routing

- Classify by policy
- Generate table per policy
- E.g. Internet2 Clique

Metric optimization

- App tags packets(e.g. "low latency")
- Generate one table per metric

Architecture

- Probe between nodes, determine path qualities
- Link-state routing protocol between nodes
- Data handled by application-specific conduit (UDP)
- → Probing: Knowledge about network paths
- → Forwarding: Control which path packets take

2-Redundant Multipath Routing

Packet duplication: simple FEC. Choice of paths:

- Direct + Random (efficient)
- Random + Random (interesting)
- Use probe data (possibly better)

Two Mechanisms

Best path vs. 2-Redundant. When to use which?

- Number of nodes scaling
- Responsiveness tradeoff
- Traffic volume

Best Path Scaling

Routing and probing add packets:

Responsiveness vs. overhead vs. size

• 50 nodes pushes it, but is enough for many apps. 2-Redundant scales higher.

Reactive vs. Redundant Routing

- Reactive limit: best path performance
- Redundant limit: Path independence
- Overhead scaling: throughput vs. nodes

Many Evaluation Questions

- Does the RON approach work?
 - How fast do we detect and avoid bad paths?
 - How many Internet outages are avoidable?
 - How does RON affect latency/throughput?
- How does best-path routing compare to redundant routing?

Evaluation

Four datasets from Internet deployment

- RON_1 : 12 nodes, 64 hours, Mar 2001
- RON_2 : 16 nodes, 85 hours, May 2001
- RON_{wide} : 17 nodes, 5 days, Jul 2002
- RON_{narrow} : 17 nodes, 3 days, Jul 2002

US, Europe, Asia testbed of ~ 20 nodes

- Variety of network types and bandwidths
- N^2 path scaling effect

Evaluation Methodology

- Loss & latency. Each node repeats:
 - 1. Pick random node j
 - 2. Pick a probe type (direct, loss, direct + random, latency + loss) round-robin. Send to j
 - 3. Delay for random interval
- RON_{wide} explored more probe types in less detail. RON_1 and RON_2 lacked mesh.

Major Results

- Probe-based outage detection effective
 - RON takes ~10s to route around failure
 Compared to BGP's several minutes
 - Many Internet outages are avoidable
 - RON improves latency / loss / throughput
- Redundant routing equally or more effective
 - Avoids same outages
 - Reduces "baseline" loss rate more.

RON_1 vs Internet 30 minute loss rates

[90,100]	12								
[80,90)	2								
Internet Loss	1								
	3	1							
Rate	1								
	3								
	8	1							
[20,30)	87	8	4						
[10,20)	362	32	12						
(0,10)	2188	44	3						
	(0,10) [20,30) [10,20]			RON loss rate					

• 6,825 "path hours" (13,650 samples)

$\underline{RON_{narrow}}$ 10 minute loss rates

Low loss vs. high loss improvement

RON_{narrow} Major > 80% Outages

Future Work

- Fundamentals
 - Internet scalability / resilience trade-off
- Scaling
 - How big? What tactics?
 - Interacting RONs? Stability?

Conclusions

- Control over resiliency allows mechanism to match application needs. Best Path and Redundant each good for different traffic mix.
- Overlays attractive spot for resiliency:
 development, fewer nodes, simple substrate
- → RON libraries are good platform for development, research

Lots of interesting work remains!

http://nms.lcs.mit.edu/ron/